organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chang-Mei Wei,^a Tao Jiang,^a Yi-Zhi Li,^b Hong-Jun Zhu^a and Jin-Tang Wang^a*

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^bCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China

Correspondence e-mail: wjt@njuct.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.045 wR factor = 0.139 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-(8-Hydroxyquinolyl)guanidinium dichloride

The title compound, $C_{10}H_{12}N_4O^{2+}\cdot 2Cl^-$, was synthesized by the reaction of 5-amino-8-hydroxyquinoline and cyanamide. The plane of the guanidinium group is perpendicular to the quinoline ring system, with a dihedral angle of 83.52 (10)°. $N-H\cdots Cl$ and $O-H\cdots Cl$ hydrogen bonds form a threedimensional network.

Comment

Guanidine is found in many natural products (Manimala & Anslyn, 2002). Guanidine compounds, especially those containing a quinolyl ring, and their salts are useful in the treatment of gastrointestinal motility disorders (Kuhla *et al.*, 1986). These important compounds are therefore of interest from a structural viewpoint. In this paper, we report the crystal structure of the title compound, (I).

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Atom N1 and the guanidine group are protonated (Fig. 1 and Table 1). The plane O1/C7/C8/C9 is parallel to the quinoline plane (N1/C1-C9), forming a dihedral angle of 0.38 (19)°, while the plane of the guanidinium moiety (N2/N3/N4/C10) is perpendicular to the quinoline plane, with a dihedral angle of 83.52 (10)°. Because of the conjugation in the guanidinium moiety, the N2-C10, N3-C10 and N4-C10 bond distances are 1.363 (4) Å, 1.326 (4) Å and 1.316 (4) Å, respectively. The two Cl⁻ ions are bound to the H atoms of the guanidinium and hydroxy groups through hydrogen bonds, forming a three-dimensional network (Fig. 2 and Table 2).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 16 February 2004 Accepted 20 February 2004

Online 28 February 2004

Experimental

The title compound was synthesized according to the method described by Hughes & Liu (1976). A mixture of 5-amino-8-hydroxyquinoline, concentrated hydrochloric acid, cyanamide and ethyl alcohol was heated at reflux for 3 h, with stirring. The reaction mixture was evaporated to give a residue. This residue was dissolved in hot methanol and then left to stand at 273 K for 7 h to yield the title compound. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

 $D_x = 1.361 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25

reflections $\theta = 2.1-25.3^{\circ}$

 $\mu = 0.47 \text{ mm}^{-1}$ T = 293 (2) KPrism, yellow $0.30 \times 0.25 \times 0.22 \text{ mm}$

 $R_{\rm int} = 0.012$

 $\begin{array}{l} \theta_{\rm max} = 25.0^{\circ} \\ h = 0 \rightarrow 12 \end{array}$

 $k = 0 \rightarrow 13$ $l = -26 \rightarrow 26$

3 standard reflections

every 97 reflections

intensity decay: 2.5%

 $w = 1/[\sigma^2(F_o^2) + (0.09P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

_3

+1.95P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.71 \text{ e Å}$

 $\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

Crystal data

$C_{10}H_{12}N_4O^{2+}\cdot 2Cl^{-}$
$M_r = 275.14$
Monoclinic, C2/c
a = 10.715 (2) Å
b = 11.333 (2) Å
c = 22.720(5) Å
$\beta = 103.30 \ (3)^{\circ}$
$V = 2685.0 (10) \text{ Å}^3$
Z = 8

Data collection

Siemens P4 diffractometer $2\theta/\omega$ scans Absorption correction: ψ scan (XPREP in SHELXTL; Bruker, 2000) $T_{min} = 0.799, T_{max} = 0.902$ 2501 measured reflections 2366 independent reflections 1885 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.139$ S = 1.052366 reflections 154 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

C1-N1	1.300 (4)	C9-N1	1.426 (4)
C3-C4	1.388 (4)	C10-N4	1.316 (4)
C4-C9	1.413 (4)	C10-N3	1.326 (4)
C5-N2	1.423 (4)	C10-N2	1.363 (4)
C8-O1	1.349 (3)		
C3-C4-C5	124.4 (3)	C8-C9-C4	124.5 (3)
C4-C5-N2	119.3 (3)	C8-C9-N1	119.1 (2)
O1-C8-C7	123.6 (3)	N4-C10-N2	118.8 (3)

The crystal structure of (I). Dashed lines indicate hydrogen bonds.

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2A\cdots Cl1^{i}$	0.86	2.43	3.250 (3)	160
$N3-H3B \cdot \cdot \cdot Cl1^{i}$	0.86	2.58	3.362 (3)	152
N3-H3A···Cl2 ⁱⁱ	0.86	2.50	3.277 (3)	150
N4-H4A···Cl1 ⁱⁱ	0.86	2.61	3.293 (3)	137
N4-H4 B ···Cl1 ⁱⁱⁱ	0.86	2.54	3.320 (3)	152
$O1-H1C\cdots Cl2^{iv}$	0.96	2.08	3.033 (2)	170

Symmetry codes: (i) $\frac{1}{2} + x, \frac{1}{2} + y, z$; (ii) $1 - x, y, \frac{1}{2} - z$; (iii) 1 + x, y, z; (iv) $\frac{3}{2} - x, \frac{3}{2} - y, 1 - z$.

All H atoms were positioned geometrically (N-H = 0.86, O-H = 0.96 and C-H = 0.93 Å) and treated as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *XSCANS* (Bruker, 2000); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 2000); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the Foundation of 'Societal Development' of Jiangsu Province (BS2002041) for financial support.

References

Bruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Hughes, J. L. & Liu, R. C. H. (1976). US Patent No. 4 0002 79.

Kuhla, D. E., Studt, W. L., Campbell, H. F. & Yelnosky, J. (1986). US Patent No. 4 5634 60 A.

Manimala, J. C. & Anslyn, E. V. (2002). Tetrahedron Lett. 43, 565-567.